

Understanding Kratom: Consumption Patterns and Treatment Strategies for Kratom Addiction

Cornel Stanciu, MD, CPE, MRO, FASAM, FAPA

Director of Addiction Services at New Hampshire Hospital Assistant Professor of Psychiatry at Dartmouth's Geisel School of Medicine May 16, 2024

Housekeeping

- This event is brought to you by the Providers Clinical Support System

 Medications for Opioid Use Disorders (PCSS-MOUD). Content and
 discussions during this event are prohibited from promoting or selling
 products or services that serve professional or financial interests of
 any kind.
- The overarching goal of PCSS-MOUD is to increase healthcare professionals' knowledge, skills, and confidence in providing evidencebased practices in the prevention, treatment, recovery, and harm reduction of OUD.

Disclosure to Learners

AAAP is committed to presenting learners with unbiased, independent, objective, and evidence-based education in accordance with accreditation requirements and AAAP policies.

Presenter(s), planner(s), reviewer(s), and all others involved in the planning or content development of this activity were required to disclose all financial relationships within the past 24 months

All disclosures have been reviewed, and there are no relevant financial relationships with ineligible companies to disclose.

All speakers have been advised that any recommendations involving clinical medicine must be based on evidence that is accepted within the profession of medicine as adequate justification for their indications and contraindications in patient care. All scientific research referred to, reported, or used in the presentation must conform to the generally accepted standards of experimental design, data collection, and analysis.

Educational Objectives

- At the conclusion of this activity participants should be able to:
 - Understand Kratom's literature, covering its uses, risks (overdose, addiction), and product toxicities.
 - Evaluate Kratom's role in harm reduction, distinguishing between evidence-based practices and misconceptions.
 - Implement evidence-based treatments for Kratom addiction, facilitating informed discussions and effective interventions with patients.

INTRODUCTION

5

The Plant - Mytragyna Speciosa Korth

- Tropical evergreen tree/shrub related to the coffee plant.
- Native to Southeast Asia
- Indigenous to Thailand,
 Indonesia, Malaysia and
 Papua New Guinea.
- First formally described in 1839 by Dutch colonial botanist Pieter Korthals.

Traditional Use

- Used for centuries by the indigenous population to enhance stamina and combat physical ailments from hard labor.
- Not regarded as "drug use", but rather as a way of life, embedded in traditions and customs.
- Therapeutically also used for selfmanaging pain, cough and diarrhea.
- Leaves are chewed, brewed as tea, or to a lesser degree smoked, producing a complex stimulant and opioid-like effect.

Use in Southeast Asia

- In time it has also gained popularity as an opioid substitute.
- Its potential for tolerance and dependence has long been apparent.
- Reports of significant adverse effects or mortality in Asia are not extensively documented.
- A recent trend in the region is its use in urban settings by young individuals as part of polydrug concoctions for euphoric effects.

Use in the West

- Dry or crushed leaves; concentrated extracts, powders, capsules; tablets, liquids, and gum/resin.
- Readily available at smoke shops or through online vendors with no quality control.
- Dramatic increase in importation since 2016.

Use in the West

- Kratom is increasingly used by people who advocate for it as a plant-based remedy to self-manage pain, mental health symptoms, and opioid withdrawal.
- Growth of Kratom use in the Western world also parallels increasing concerns over adverse effects, abuse, and addictive potential.
- Adverse effects associated with Kratom products span multiple organ systems including hepatic, renal, cardiac, endocrine, and neurological.
- Fatalities involving kratom are increasingly documented, however involve coingestions, or polydrug combinations.

Epidemiology

Study	Study sponsor / recruitment	Sample	Prevalence
Palamar, 2021 (NSDUH 2019 data reported in 2020)	US Federal survey by SAMHSA (N=67,625) Nationally-representative sample, face-to-face interviews	General US population aged 12+	Lifetime: 1.5% Past year: 0.7% Past month: 0.3%
Schimmel, 2020	US survey by RADARS System panel of paid responders (N=59,714) Non-probability sample with online self-administration	General US population aged 18+	Lifetime: 1.3% Past year: 0.8%
Covvey, 2020	US survey via Qualtrics Panels (N=1,842) Non-probability sample with online self-administration	General US population aged 18–59	Lifetime: 6.1% Past year: 4.1% Past month: 3.5%
ΑΚΑ	Estimate of number of US kratom consumers based on Southeast Asian kratom export volume in consultation with kratom venders and retailers	Average monthly volume of Kratom exported to the US / average monthly volume of kratom use by the US kratom consumer = approximate number of US kratom consumer	15,600,244 estimated US kratom consumers
Botanical Education Alliance and AKA	US surveys of kratom venders and retailers 2014-2016	Kratom venders and retailers	3–5 million kratom consumers
Stanciu (this study)	Addiction Services embeded within a state psychiatric hospital (N = 578) Addiction psychiatry evaluations via self report	SMI patients referred to the addiction services for substance use interventions	Lifetime: 2.2% Past year: 1.9% Past month: 1.7%

- The prevalence of Kratom use in the United States is not well defined, with lifetime estimates ranging from 0.9 to 6.1%
 - versus 2.9 to 12% in Thailand.

Epidemiology

- Association data supports a greater burden of mental health and substance use disorders, especially opioids, among users.
- Lifetime nonmedical opioid use is also associated with a greater likelihood of Kratom use.
- In SE Asia:
 - Tolerance occurs within 3 months, and some escalate use 4-10x within the first few weeks.
 - 55% of regular users become dependent, with some reports suggesting a relapse rate of 78-83% at 3 months.

Survey of consumers

Demographics:

- Middle-aged (31-50 years of age), white male.
- Married, employed, and insured.
- Some college education with an income of over \$35,000 / year.
- Duration of use >1 year but < 5 years.
- Reasons for use
 - Self-manage chronic pain (68%), anxiety, or depression (65%) and as an opioid replacement.
 - 40% of users endorse the use of Kratom to reduce/stop opioid use, with 74% claiming >6mo success in abstinence.
 - 41% disclosed use to healthcare providers.
- Ratings of improvements show a majority of consumers rate overall health as "good".

Self-reported overall Health rating

Distribution of Consumers

 Heavily concentrated in the South, followed by West and Midwest, and few in the Northeast

System

Medications for Opioid Use Disorders

Legal Status and Regulation on Sales

- Malaysia, Vietnam illegal.
- Thailand illegal until 2021.
- In the US it was legal to grow and purchase in all states until 2015.
- Uncontrolled under federal regulation.
- In 2016 the DEA submitted an intent to schedule under the CSA, but later that year withdrew.
- The Kratom Consumer Protection Act exists in some states as legislation to ensure consumer access to Kratom with a framework for regulatory oversight.

15

PHARMACOLOGY

Behavioral Pharmacology

- The effects in humans have historically been described as dose-dependent:
- Small doses (1-5g)
 - Stimulatory, caffeine-like, effects.
- Larger dosages (>5g)
 - Sedative, analgesic effects.

Complex Composition

Alkaloid	Percentage	Effect
Mitragynine	663	Analgesic, antitussive, antidiarrheal,
	$\mathbf{\overline{\mathbf{v}}}$	adrenergic, antimalarial
Paynantheine	9%	Smooth muscle relaxer
Speciogynine	7%	Smooth muscle relaxer
7-Hydroxymitragynine	2%	Analgesic, antitussive, antidiarrheal
Speciociliatine	1%	Weak opioid agonist
Mitraphylline	<1%	Vasodilator, antihypertensive, muscle
		relaxer, diuretic, antiamnesic,
		immunostimulant, anti-leukemic
Isomitraphylline	<1%	Immunostimulant, anti-leukemic
Speciophylline	<1%	Anti-leukemic
Rhynchophylline	<1%	Vasodilator, antihypertensive, calcium
		channel blocker, antiaggregant,
		anti-inflammatory, antipyretic,
		anti-arrhythmic, antithelmintic
Isorhynchophylline	<1%	Immunostimulant
Ajmalicine	<1%	Cerebrocirculant, antiaggregant,
		anti-adrenergic, sedative,
		anticonvulsant, smooth muscle relaxer
Corynantheidine	<1%	Opioid agonist
Corynoxine A	<1%	Calcium channel blocker,
		anti-locomotive
Corynoxine B	<1%	Anti-locomotive
Mitrafoline	<1%	
Isomitrafoline	<1%	
Oxindale A	<1%	
Oxindole B	<1%	
Speciofoline	<1%	Analgesic, antitussive
Isospeciofoline	<1%	
Ciliaphylline	<1%	Analgesic, antitussive
Mitraciliatine	<1%	
Mitragynaline	<1%	
Mitragynalinic acid	<1%	

<1%

Corynantheidalinic acid

Leaf analysis

 40 structurally related alkaloids, flavonoids, terpenoid saponins, polyphenols, and various glycosides.

>25 indole alkaloids

- 1-2% by weight
- Mitragynine (MG)
 - ~60%
- 7-hydroxymitragynine (70HMG)
 - Extremely small representation of plants
 - Metabolic product of MG (CYP3A4)

"Potency"

- White vein stimulating, to help with concentration.
- Green vein improves mood, and depression.
- Red vein calming effects, to help relax/sleep.

Cornel Stanciu, M.D. @CornelStanciu · Sep 12 ···· Question for #kratom consumers: is there really a noticeable difference in terms of effects from the different strains (red/green/white)?

ncbi.nlm.nih.gov/pmc/articles/P...

• Commercial products differ in composition.

Phase Model

Providers Clinical Support System

edications for Opioid Use Disorders

20

Opioid Receptors

			Mu		Kappa	Delta		
ID	Name	K_i [μM]	Prediction (Clarity/SEA)	Ki	Prediction	Ki	Prediction	
1	Mitragynine	0.74	ТТ	1.3	ТТ	6.5	ТТ	
2	Speciogynine	1.0	ТТ	3.6	ТТ	>10	ТТ	
7	7-hydroxymitragynine	0.070	ТТ	0.32	ТТ	0.47	ТТ	
11	Ajmalicine	8.96	+ -	>10		>10		
12	Tetrahydroalstonine	>10	+ -	>10		>10		
14	Corynoxine B	1.6	- +	>10	- +	7.6		
16	Isorhynchophylline	0.54	- +	>10	- +	6.4		
20	Corynoxeine	>10	- +	>10		>10	+ -	
21	Isocorynoxeine	>10	- +	>10		>10	+ -	

Providers Clinical Support 21 System

Opioid Receptor Efficacy

Atypical Interactions with Opioid Receptors

- Similarities to opioids:
 - Partial agonism at mu receptors
 - Binding to opioid Rs initiates Gprotein-coupled receptor (GPCR) signaling.
- Differences from opioids:
 - GPCR activation by indole alkaloids does not initiate the βarrestin pathway
 - "biased agonism"
- MG also exerts non-opioid receptor pain-relieving effects by stimulating alpha-2 and inhibiting cyclooxygenase-2 mRNA and protein expression.

Other Receptor Systems

		Adrenergic Receptors							Serotonin Receptors			
			Alpha-2A	A	pha-2B	Al	pha-2C	5	5-HT1A	5	5-HT2A	
ID	Name	Κ i [μ Μ]	Prediction (Clarity/SEA)	Ki	Prediction	Ki	Prediction	Ki	Prediction	Ki	Prediction	
1	Mitragynine	2.3	++	4.9	++	3.5	- +	5.8		7.3	+ -	
2	Speciogynine	0.36	++	2.6	++	0.68	- +	0.54		2.9	+ -	
7	7-Hydroxy mitragynine	>10	+ -	>10	+ -	>10	+ -	>10		>10		
11	Ajmalicine	0.045	ТТ	0.043	ТТ	0.065	- T	0.42	+ -	>10		
12	Tetrahydroalstonine	0.018	ТТ	0.040	ТТ	0.053	- T	0.38	+ -	2.6		
14	Corynoxine B	>10		>10		>10		>10		>10		
16	Isorhynchophylline	4.8		>10		>10		>10		>10		
20	Corynoxeine	>10		8.4		>10		>10		>10		
21	Isocorynoxeine	>10		>10		>10		>10		>10		

MG

- MG relieves neuropathic pain.
 - Relief blocked by both opioid and adrenergic blockers.

ADVERSE EFFECTS

Animal Studies

- Ascending doses of Kratom alkaloids result in an increase in:
 - Blood pressure
 - Liver function tests
 - Creatinine
 - Death preceded by convulsions, not respiratory depression
- Herb: drug interactions:
 - MG inhibits CYP 2C9, 2D6, 3A4 as well as glucuronidation by UDPglucuronosyltransferases.
- Labilities:
 - MG less reinforcing than morphine and may be tolerance-sparing when co-administered.
 - 7OHMG substitutes for morphine, re-institutes conditioned place preference (CPP, measure of rewarding effects in animal models).

Human Case Reports

• After > 1 year of regular use:

• Weight loss; Insomnia; Constipation; Skin hyperpigmentation; Extreme fatigue.

Organ system	Presentation signs and conditions	References
Hepatic	Acute liver failure, hepatitis, transaminitis, intrahepatic cholestasis, hepatomegaly	[23, 108–116, 131]
Endocrine	Hypothyroidism, hypogonadism	[<u>26, 100</u>]
Renal	Acute kidney injury	[<u>67]</u>
Cardiac	Cardiotoxicity, arrhythmia	[<u>98, 99]</u>
Pulmonary	Acute lung injury, ARDS	[<u>101, 102</u>]
Obstetric	Neonatal abstinence syndrome	[<u>103–107]</u>
Neurological	Acute brain injury, seizure, coma, cognitive impairment	[<u>21, 81, 117, 118</u>]

Poison Control Centers

- Kratom overdoses resemble adrenergic toxicity more so than opioids:
 - Nausea and tachycardia predominate.
 - Respiratory depression is rare.

Clinical effects	Total	Clinical effects	Total
	n (%)		n (%)
Single-substance exposure total	1174		
Neurological		Gastrointestinal	
Agitated/irritable	269 (22.9)	Nausea	171 (14.6)
Drowsiness/lethargy	168 (14.3)	Vomiting	155 (13.2)
Confusion	125 (10.6)	Abdominal pain	76 (6.5)
Seizures (single/multiple)	113 (9.6)	Respiratory	
Tremor	79 (6.7)	Respiratory depression	42 (3.6)
Dizziness/vertigo	62 (5.3)	Hematologic/hepatic	
Hallucinations/delusions	61 (5.2)	AST, ALT > 100	59 (5.0)
Cardiovascular			
Tachycardia	251 (21.4)		
Hypertension	119 (10.1)		

Kratom-Related Deaths

- Co-ingestions and other active use disorders predispose patients to death (found in 87% of cases).
- It is challenging to identify which deaths are attributed to kratom alone.

Table 1: Details of Kratom-Attributed Overdoses in New England

State	Year	Gender	Age	Medical and psychiatric comorbidities	Prescribed medications	SUD	Kratom use	Last known responsive	Found unresponsive	Toxicology Findings	Autopsy findings	Other facts / comments
NH	2018	М	31	mostly unknown except new onset seizures, ~ months	unknown	Past illicit use, including heroin and fentanyl	Tea (per family), recent months considering it "safer than heroin or fentanyl"	5/10/18~00:00 EST	5/11/2018 femoral blood: caffeine; cotinine; 11-OH-delta9-THC 2.1 ng/mL; delta9-carboxy-THC 11 ng/mL; delta9-THC 8.9 ng/mL; MG 890ng/mL.		Unremarkable	
ME	2020	М	25	unknown	none	Known polysubstance abuse history	unknown	same day	22:41 EST	Ethanol 338 mg/dL; cotinine; MG 23 ng/dL	Unremarkable	Hypodermic needle found at site
СТ	none											
RI	cannot be disclosed	cannot be disclosed	cannot be disclosed	cannot be disclosed	cannot be disclosed	cannot be disclosed	cannot be disclosed	cannot be disclosed	cannot be disclosed	cannot be disclosed	cannot be disclosed	
MA	2022	F	36	atherosclerotic cardiovascular disease	cannot be disclosed	cannot be disclosed	cannot be disclosed	cannot be disclosed	cannot be disclosed	cannot be disclosed cannot be disclosed		
VT	none											

Stanciu, C.N., et al. (2023). "Kratom Overdose Risk: A Review." Curr Addict Rep, 10(1), 9–28. DOI: 10.1007/s40429-022-00464-1

MANAGEMENT

- ~41% of Kratom consumers disclose consumption to healthcare providers.
 - In assessments, use non-judgmental, non-stigmatizing, questions
 - "Do you use any herbal medicines, like valerian root or kratom?"
- Not detected by routine toxicology or conventional confirmatory drug screening tests.
- HPLC or Mass spectrometry is required for detection & identification.

Toxicity

- Toxicity -- supportive management in most cases.
 - Acute hepatitis -- *N*-acetylcysteine (as in any other drug-induced hepatitis).
 - Seizures or neurological symptoms -- anti-epileptics.
 - Kidney injury, cardiovascular events, or other emergency presentations addressed with appropriate measures.
- Overdose
 - Kratom-only overdoses resemble stimulant overdoses (cardiovascular, seizure).
 - Poison Control Center reports show low levels of meiosis, sedation, and respiratory depression.
 - Co-ingestions are common
 - Reports describe mixed outcomes with reversal agents (naloxone); no clinical trials exist.

Withdrawal

34

"Kratom Use Disorder"

- ~25.5% of consumers, however mild-mod severity (tolerance, withdrawal) and no functional impact.
- Vulnerability factors: male, young, consuming Kratom frequently, and having psychiatric and substance use disorders.

Table 2. KUD Symptoms Reported by Survey Participants, Stratified by Qualifying for a Potential KUD							
	Full Sample	5	KUD	KUD No)	
	(N = 2,061)	(n = 525)		(n = 1,536)		p value*
Sample Characteristics	Frequency	%	Frequency	%	Frequency	%	
Kratom Use Disorder Symptoms							
Ever noticed a diminished effect with continuous use of the same	648	31.4	427	81.3	221	14.4	<0.0001
amount of Kratom, or a need to increase the amount of Kratom to							
achieve the desired effect							
Experienced withdrawal symptoms when abruptly stopping and	447	21.7	357	68.0	90	5.9	< 0.0001
continued use to avoid withdrawal or to manage these symptoms							
Experience craving, or a strong desire or urge to use Kratom	340	16.5	298	56.8	42	2.7	<0.0001
Find self-using Kratom in larger amounts, or over a longer period,	305	14.8	281	53.5	24	1.6	<0.0001
than initially intended							
Find self-wanting to cut down or being unsuccessful at controlling	183	8.9	179	34.1	4	0.3	< 0.0001
Kratom use							
Continue to use Kratom despite knowing that one has a physical or	106	5.1	104	19.8	2	0.1	<0.0001
psychological problem caused or exacerbated by Kratom							
Continue to use Kratom despite social or interpersonal problems	83	4.0	75	14.3	8	0.5	< 0.0001
related or exacerbated by the effects of Kratom							
Spend a great deal of time in activities needed to obtain, use, or	58	2.8	55	10.5	3	0.2	<0.0001
recover from the effects of Kratom							
Often give up or reduced important occupational or social activities	49	2.4	49	9.3	0	0	<0.0001
because of Kratom use or its effects							
Find yourself using Kratom in situations where it can be physically	44	2.1	42	8.0	2	0.1	<0.0001
hazardous							
Often fail to fulfil work, home, or school obligations due to Kratom	34	1.7	33	6.3	1	0.1	<0.0001
use or its effects							
Severity							
Mild	-	-	347	66.1	-	-	
Moderate	-	-	105	20.0	-	-	
Severe	-	-	73	13.9	-	-	
* p value is for Chi-Square Test, comparing KUD to no KUD							

Maintenance Treatment

Our team's efforts to establish a "standard of care".

- Since 2021 several reports emerged.
 - Mixed evidence of amount used, and Buprenorphine dose needed.
- Those requiring MOUD for maintenance could represent a small Providers group. Clinical Support

Case 1 - Andrew

- 33yo Caucasian male h/o anxiety, depression (on Escitalopram 20mg and Propranolol 10mg BID), OUD in sustained remission x 12 y
- Started 2.5y ago, initially 2 caps per dose, progressively increased to 8 caps within a few weeks to manage various mood states.
- Distinct effects from kratom vs. Percocet: increased energy, uplifted mood, and motivation.
- Diminishing effects over time, he continued to consume 12-15 caps daily, transitioning to powdered kratom washed with water 1.5 y ago.
- Significant lifestyle disruptions in the last year, including marital strain, work interference, and financial burden.
- Struggled with increasing intervals between doses, experiencing withdrawal symptoms (cold sweats, "brain zaps", and cravings after 6-7 hr. abstinence).
- Detox and eventually transitioning to naltrexone using SOWS alongside clonidine, loperamide and gabapentin failed - could not abstain for >12 hr.
- Successfully transitioned to buprenorphine 2mg daily with an additional 2mg dose as needed in the evening for craving management.

System

Case 2 - Fred

- 37yo Caucasian male h/o OUD in sustained remission admitted to inpatient psych due to depression, SI.
- General workup was unremarkable (EKG, labs, vs); Urine tox + THC.
- Disclosed a 6-mo h/o Kratom use, escalating to 11 capsules daily (3 in AM, 3 mid-day, 5 in PM), supplemented with an unknown quantity powder in water.
- Introduced to it as an antidepressant and had initially started with 1 cap in the morning however within days he increased his dosage to 3 caps to combat decreased effectiveness and maintain energy levels.
- Constipation is the only side effect, recent attempts to quit after learning about reports on the Internet of various adverse effects were hindered by cravings and "rebound depression."
- Last use 24hr prior to admission and he experienced progressively worsening nausea and flu-like symptoms which were first noticed 6 hours ago.
- COWS = 11, Methadone 5mg x1 administered, COWS = 2.
- Next day COWS remained 2, Clonidine 0.1mg x1 for anxiety, (HR 87 and BP 142/95).
- Aripiprazole 5mg (past response), fifth day he underwent a naltrexone challenge and received a monthly long-acting injectable.

Case 3 - Mark

- 43yo Caucasian male h/o anxiety, chronic pain, ADHD
- Anxiety is generalized with occasional panic attacks, has a therapist
- Past injuries, and back pain necessitating spinal fusion.
- Self-medicating for pain with kratom (~5 g of powder daily) for >5 years.
- Improves pain allowing him to be mobile without the use of any pharmacotherapies which his orthopedic surgeon has discussed in the past.
- In addition to the pain benefit he also has noticed that kratom ingestion also tends to "bring the temperature down" on his anxiety.
- No adverse effects and his dose and frequency have remained the same as when he initiated.
- Has had stretches of up to 1wk of no kratom and never experienced withdrawal, or cravings despite pain exacerbation.
- Trintellix 20mg and Vyvanse 30mg
- Organic evaluation unremarkable (CMP, CBC, TSH), MG level 133 ng/mL was quantified.

*psychoeducation, motivational enhancement ongoing

- The exact prevalence of kratom use is unknown, however clinicians are encountering more and more consumers.
- Despite consumers claiming benefits/harm reduction, it is possible for some to meet DSM criteria for a "use disorder" diagnosis.
- Kratom is a complex botanical, and its alkaloids interact with many receptor systems - including opioids.
- There is a spectrum of adrenergic and opiodendric involvement impacting each user, and withdrawal, and maintenance treatment requires individualized treatment.

References

- Abuse, N. I. on D. (--). *What are the long-term effects of methamphetamine misuse*? National Institute on Drug Abuse. <u>https://www.drugabuse.gov/publications/research-reports/methamphetamine/what-are-long-term-effects-methamphetamine-misuse</u>
- Akindipe, T., Wilson, D., & Stein, D. J. (2014). Psychiatric disorders in individuals with methamphetamine dependence: Prevalence and risk factors. *Metabolic Brain Disease*, *29*(2), 351–357. <u>https://doi.org/10.1007/s11011-014-9496-5</u>
- Chan, B., Freeman, M., Kondo, K., Ayers, C., Montgomery, J., Paynter, R., & Kansagara, D. (2019). Pharmacotherapy for methamphetamine/amphetamine use disorder—A systematic review and meta-analysis. *Addiction*, *114*(12), 2122–2136. <u>https://doi.org/10.1111/add.14755</u>
- Coffin, P. O., Santos, G.-M., Hern, J., Vittinghoff, E., Santos, D., Matheson, T., Colfax, G., & Batki, S. L. (2018). Extended-release naltrexone for methamphetamine dependence among men who have sex with men: A randomized placebo-controlled trial. *Addiction*, *113*(2), 268–278. <u>https://doi.org/10.1111/add.13950</u>
- Colfax, G. N., Santos, G.-M., Das, M., Santos, D. M., Matheson, T., Gasper, J., Shoptaw, S., & Vittinghoff, E. (2011). Mirtazapine to Reduce Methamphetamine Use: A Randomized Controlled Trial. *Archives of General Psychiatry*, 68(11), 1168–1175. <u>https://doi.org/10.1001/archgenpsychiatry.2011.124</u>
- Elkashef, A., Kahn, R., Yu, E., Iturriaga, E., Li, S.-H., Anderson, A., Chiang, N., Ait-Daoud, N., Weiss, D., McSherry, F., Serpi, T., Rawson, R., Hrymoc, M., Weis, D., McCann, M., Pham, T., Stock, C., Dickinson, R., Campbell, J., ... Johnson, B. A. (2012). Topiramate for the treatment of methamphetamine addiction: A multi-center placebo-controlled trial: Topiramate for methamphetamine addiction. *Addiction*, *107*(7), 1297–1306. <u>https://doi.org/10.1111/j.1360-0443.2011.03771.x</u>
- Heinzerling, K. G., Swanson, A.-N., Hall, T. M., Yi, Y., Wu, Y., & Shoptaw, S. J. (2014). Randomized, placebo-controlled trial of bupropion in methamphetamine-dependent participants with less than daily methamphetamine use: Bupropion for methamphetamine dependence. *Addiction*, 109(11), 1878–1886. <u>https://doi.org/10.1111/add.12636</u>
- Jayaram-Lindström, N., Hammarberg, A., Beck, O., & Franck, J. (2008). Naltrexone for the Treatment of Amphetamine Dependence: A Randomized, Placebo-Controlled Trial. *American Journal of Psychiatry*, *165*(11), 1442–1448. <u>https://doi.org/10.1176/appi.ajp.2008.08020304</u>
- Kish, S. J. (2008). Pharmacologic mechanisms of crystal meth. CMAJ, 178(13), 1679–1682. https://doi.org/10.1503/cmaj.071675
- Konstenius, M., Jayaram-Lindström, N., Guterstam, J., Beck, O., Philips, B., & Franck, J. (2014). Methylphenidate for attention deficit hyperactivity disorder and drug relapse in criminal offenders with substance dependence: A 24-week randomized placebo-controlled trial. *Addiction (Abingdon, England)*, *109*(3), 440–449. https://doi.org/10.1111/add.12369

References

- Logan, B. K. (2002). Methamphetamine—Effects on Human Performance and Behavior. 19.
- Logan—2002—Methamphetamine—Effects on Human Performance and.pdf. (n.d.). Retrieved November 21, 2021, from http://www.biblioteca.cij.gob.mx/Archivos/Materiales_de_consulta/Drogas_de_Abuso/Articulos/methamphetamine.pdf
- Longo, M., Wickes, W., Smout, M., Harrison, S., Cahill, S., & White, J. M. (2010). Randomized controlled trial of dexamphetamine maintenance for the treatment of methamphetamine dependence. *Addiction*, 105(1), 146–154. <u>https://doi.org/10.1111/j.1360-0443.2009.02717.x</u>
- Matsumoto, T., Kamijo, A., Miyakawa, T., Endo, K., Yabana, T., Kishimoto, H., Okudaira, K., Iseki, E., Sakai, T., & Kosaka, K. (2002). Methamphetamine in Japan: The consequences of methamphetamine abuse as a function of route of administration. *Addiction*, *97*(7), 809–817. https://doi.org/10.1046/j.1360-0443.2002.00143.x
- Methamphetamine Psychosis: Epidemiology and Management—ProQuest. (n.d.-a). Retrieved November 7, 2021, from https://www.proquest.com/docview/1641841832/fulltext/C1BC91A83BD045E1PQ/1?accountid=10422
- Methamphetamine Psychosis: Epidemiology and Management—ProQuest. (n.d.-b). Retrieved November 7, 2021, from https://www.proquest.com/docview/1641841832/fulltext/C1BC91A83BD045E1PQ/1?accountid=10422
- Meyers, R. J., Roozen, H. G., & Smith, J. E. (2011). The Community Reinforcement Approach. Alcohol Research & Health, 33(4), 380–388.
- Miller, S. (2019). The ASAM Principles of Addiction Medicine (6th ed.). Wolters Kluwer.
- NIDA. 2021, April 13. What are the long-term effects of methamphetamine misuse?. Retrieved from https://www.drugabuse.go. (n.d.).
- Signs Someone is Using Methamphetamine—How to Tell | The Recovery Village. (n.d.). The Recovery Village Drug and Alcohol Rehab. Retrieved November 21, 2021, from https://www.therecoveryvillage.com/meth-addiction/faq/know-someone-crystal-meth/
- *Snapshot*. (n.d.). Retrieved November 7, 2021, from <u>https://www.drugabuse.gov/publications/research-reports/methamphetamine/what-are-long-term-effects-methamphetamine-misuse</u>
- The pattern of tissue loss in methamphetamine users whose brains were mapped by MRI scans. (n.d.). UCLA. Retrieved November 21, 2021, from https://newsroom.ucla.edu/file?fid=52e6ed77f6091d799c00001e
- Thompson, P. M. (2004). Structural Abnormalities in the Brains of Human Subjects Who Use Methamphetamine. *Journal of Neuroscience*, 24(26), 6028–6036. <u>https://doi.org/10.1523/JNEUROSCI.0713-04.2004</u>
- Thompson—2004—Structural Abnormalities in the Brains of Human Su.pdf. (n.d.). Retrieved November 21, 2021, from https://www.jneurosci.org/content/jneuro/24/26/6028.full.pdf
- Trivedi, M. H., Walker, R., Ling, W., dela Cruz, A., Sharma, G., Carmody, T., Ghitza, U. E., Wahle, A., Kim, M., Shores-Wilson, K., Sparenborg, S., Coffin, P., Schmitz, J., Wiest, K., Bart, G., Sonne, S. C., Wakhlu, S., Rush, A. J., Nunes, E. V., & Shoptaw, S. (2021). Bupropion and Naltrexone in Methamphetamine Use Disorder. *New England Journal of Medicine*, 384(2), 140–153. https://doi.org/10.1056/NEJMoa2020214

43

PCSS-MOUD Mentoring Program

- PCSS-MOUD Mentor Program is designed to offer general information to clinicians about evidence-based clinical practices in prescribing medications for opioid use disorder.
- PCSS-MOUD Mentors are a national network of providers with expertise in addictions, pain, and evidence-based treatment including medications for opioid use disorder (MOUD).
- 3-tiered approach allows every mentor/mentee relationship to be unique and catered to the specific needs of the mentee.
- No cost.

For more information visit: https://pcssNOW.org/mentoring/

PCSS-MOUD Discussion Forum

Have a clinical question? Ask a Colleague A simple and direct way to receive an answer related to medications for opioid use disorder. Designed to provide a prompt response to simple practicerelated questions.

http://pcss.invisionzone.com/register

Providers Clinical Support 45 System

Providers Clinical Support System

PCSS-MOUD is a collaborative effort led by the American Academy of Addiction Psychiatry (AAAP) in partnership with:

Addiction Policy Forum	American College of Medical Toxicology
Addiction Technology Transfer Center*	American Dental Association
African American Behavioral Health Center of Excellence	American Medical Association*
American Academy of Addiction Psychiatry*	American Orthopedic Association
American Academy of Child and Adolescent Psychiatry	American Osteopathic Academy of Addiction Medicine*
American Academy of Family Physicians	American Pharmacists Association*
American Academy of Neurology	American Psychiatric Association*
American Academy of Pain Medicine	American Psychiatric Nurses Association*
American Academy of Pediatrics*	American Society for Pain Management Nursing
American Association for the Treatment of Opioid Dependence	American Society of Addiction Medicine*
American Association of Nurse Practitioners	Association for Multidisciplinary Education and Research in Substance Use and Addiction*
American Chronic Pain Association	Coalition of Physician Education
American College of Emergency Physicians*	College of Psychiatric and Neurologic Pharmacists

Black Faces Black Voices

PCSS-MOUD is a collaborative effort led by the American Academy of Addiction Psychiatry (AAAP) in partnership with:

Columbia University, Department of Psychiatry*	Partnership for Drug-Free Kids
Council on Social Work Education*	Physician Assistant Education Association
Faces and Voices of Recovery	Project Lazarus
Medscape	Public Health Foundation (TRAIN Learning Network)
NAADAC Association for Addiction Professionals*	Sickle Cell Adult Provider Network
National Alliance for HIV Education and Workforce Development	Society for Academic Emergency Medicine*
National Association of Community Health Centers	Society of General Internal Medicine
National Association of Drug Court Professionals	Society of Teachers of Family Medicine
National Association of Social Workers*	The National Judicial College
National Council for Mental Wellbeing*	Veterans Health Administration
National Council of State Boards of Nursing	Voices Project
National Institute of Drug Abuse Clinical Trials Network	World Psychiatric Association
Northwest Portland Area Indian Health Board	Young People In Recovery

Providers

System

Clinical Support

S

Medications for Opioid Use Disorders

www.pcssNOW.org

pcss@aaap.org

Funding for this initiative was made possible by cooperative agreement no. 1H79TI086770 from SAMHSA. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.