

Providers Clinical Support System

BEST PRACTICES IN MANAGING PATIENTS WITH KRATOM ADDICTION

Cornel N. Stanciu, MD, MRO, FAPA, FASAM

Assistant Professor of Psychiatry at Dartmouth's Geisel School of Medicine

Director of Addiction Services at New Hampshire Hospital Thomas M. Penders, MS, MD

Affiliate Professor of Psychiatry at East Carolina University's Brody School of Medicine

Attending Psychiatrist at Walter B. Jones Alcohol and Drug Treatment Center

Thomas Penders Disclosures

 Thomas Penders, MD, has disclosed that he does not have a relevant financial relationship with an ACCME defined commercial interest.

The content of this activity may include discussion of off label or investigative drug uses. The faculty is aware that is their responsibility to disclose this information.

Cornel Stanciu Disclosures

 Cornel Stanciu, MD, has disclosed that he does not have a relevant financial relationship with an ACCME defined commercial interest.

The content of this activity may include discussion of off label or investigative drug uses. The faculty is aware that is their responsibility to disclose this information.

Target Audience

 The overarching goal of PCSS is to train healthcare professionals in evidence-based practices for the prevention and treatment of opioid use disorders, particularly in prescribing medications, as well for the prevention and treatment of substance use disorders.

Educational Objectives

- At the conclusion of this activity participants should be able to:
 - Review the current state of knowledge surrounding Kratom and its impact on patients with addictive disorders
 - Present the clinical evidence from literature and our survey of national addiction experts in managing Kratom use
 - Discuss challenges and approaches to best manage this comorbidity

INTRODUCTION

Kratom description of plant

- Kratom derives from a tropical evergreen tree or shrub related to the coffee plant.
- Native to Southeast Asia, Thailand, Malaysia, and Papua New Guinea.
- Used by indigenous population historically as a stimulant to enhance stamina and reduce fatigue.
- Also used in traditional medicine for a variety of conditions including pain.

Leaves of Mitragyna Speciosa

Uses in Southeast Asia

- In South East Asia, Kratom is used as an antidiarrheal, a cough suppressant, an antidiabetic, an intestinal deworming agent.
- Used as a wound poultice.
- Aid in treatment of heroin addiction.
- Outside Asia, anecdotal use of Kratom preparations for the self-treatment of chronic pain and opioid withdrawal symptoms and as a replacement for opioid analgesics have been reported.

Modes of Use

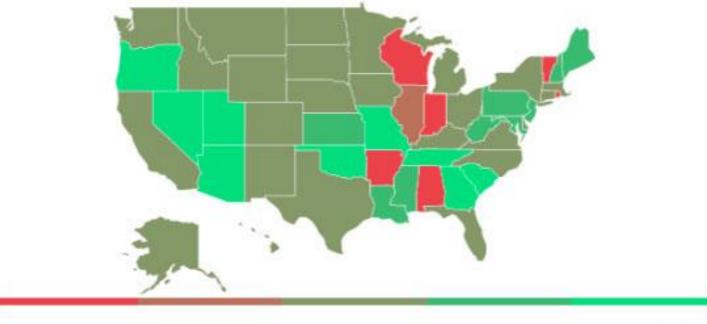
- Fresh or dried Kratom leaves are chewed or drank as a tea.
- Lemon juice is often added to facilitate the extraction of the active ingredient.
- Traditionally, before drinking, sugar or honey is added to mask the bitter taste of the brew.
- Less commonly, the leaves can be dried and smoked.
- Prepared as cold cocktail containing leaves, a caffeinated soft drink with codeine-containing cough syrup.
- Users in Southeast Asian countries remove the stems from the leaves before eating.
- Salt is added to prevent constipation. The chewed material is swallowed, chased with warm water, coffee or sugar syrup.

• Kratom users chew one to 3 fresh leaves at a time.

Kratom Products

- Leaves, dried or crushed.
- Extracts, powders, capsules.
- Tablets, liquids, and gum/resin.
- Readily available at shops or online.
- Dramatic increase in importation in 2016.
- Amounts accounted for millions of doses for recreational use.
- Often declared and falsely labeled similar to other newer drugs of abuse.

- Kratom was legal to grow and purchase in all 50 states until 2015.
- DEA identified Kratom as a substance of concern.
- As of June 2019, Kratom is illegal to buy, sell, and use in the states of Wisconsin, Rhode Island, Vermont, Indiana, Arkansas, Alabama and Ohio.
- Illegal counties of Sarasota, Florida; San Diego, California; Washington, DC and Denver, Colorado.
- The status in Canada is somewhat ambiguous. Use and sale of Kratom in Thailand is illegal.
- Banned in Australia, Poland, Denmark, Sweden, Malaysia and Vietnam.
- In many other jurisdictions there is no regulation of its use or sale.



- Currently uncontrolled under federal regulation.
- In August 2016, DEA submitted a notice of intent to temporarily schedule the opioids mitragynine and 7hydroxymitragynine, as schedule I substances under the CSA.
- American Kratom Association self-described nonprofit consumer advocacy organization claims to represent 5 million Kratom users in the US successfully campaigned for withdrawal of planned scheduling.
- DEA withdrew scheduling request in October 2016.

US Legislation

Kratom State Legality & Legislation

Epidemiology

- Little formal survey data available on prevalence of use in the US population.
- Not included in Monitoring the Future or National Survey on Drug Use and Health.
- CDC report on calls to Poison Control Centers from 2010 - reveals 666 calls with 10-fold increase over the period of the survey.
- Online survey of users identified through the American Kratom Association and through social media mentions.

inical Support

Epidemiology in SE Asia

- Use of Kratom as a recreational drug amongst a younger demographic in both SE Asia and the West.
- 55% of regular users of Kratom become dependent.
- Lack of reports of toxicity in surveys of users in Thailand.
- Emerging throughout the world as substance helpful in self-management of opioid withdrawal.

Survey of Kratom Users

- 10,000 Kratom users were surveyed with goal of determining:
 - Who is consuming Kratom and for what purpose? What perceived beneficial and detrimental effects are reported by users?
 - What do Kratom users report as a commonly used dose and frequency of consumption?
 - Does Kratom represent a potential for abuse and withdrawal?
 - Symptoms?

Kratom Survey Demographics

- Kratom users are primarily middle aged (31-50, 55.9%).
- Male (56.9%); Married or partnered (54.3%).
- White non-Hispanic (89.4%).
- Employed (56.8%).
- Insured (61.1%).
- Some college (82.3%).
- Income > \$35,000 (63.2%).
- Duration of use: > 1 year but < 5 years (56.6%).

Kratom Survey Reasons for Use

- 41% had disclosed their use to healthcare provider
- Self-treatment of chronic pain 68%
- Self-treatment of anxiety/depression 65%
- Self-treatment related to opioid misuse (including opioid withdrawal:
 - Use of illicit drugs 7.7%
 - Use of Prescription opioids 26.0%

PHARMACOLOGY

Behavioral Pharmacology

The effects in humans are dose-dependent:

- Small doses (1-5g)
 - Stimulatory effects (~ cocaine or amphetamines).
- Larger dosages (>5g)
 - Sedative-narcotic, analgesic effects (~ opioids).

Complex Composition

Alkaloid	Percentage	Effect
Mitragynine	66%	Analgesic, antitussive, antidiarrheal,
		adrenergic, antimalarial
Paynantheine	9%	Smooth muscle relaxer
Speciogynine	7%	Smooth muscle relaxer
7-Hydroxymitragynine	2%	Analgesic, antitussive, antidiarrheal
Speciociliatine	1%	Weak opioid agonist
Mitraphylline	<1%	Vasodilator, antihypertensive, muscle relaxer, diuretic, antiamnesic, immunostimulant, anti-leukemic
Isomitraphylline	<1%	Immunostimulant, anti-leukemic
Speciophylline	<1%	Anti-leukemic
Rhynchophylline	<1%	Vasodilator, antihypertensive, calcium channel blocker, antiaggregant, anti-inflammatory, antipyretic, anti-arrhythmic, antithelmintic
Isorhynchophylline	<1%	Immunostimulant
Ajmalicine	<1%	Cerebrocirculant, antiaggregant, anti-adrenergic, sedative, anticonvulsant, smooth muscle relaxer
Corynantheidine	<1%	Opioid agonist
Corynoxine A	<1%	Calcium channel blocker, anti-locomotive
Corynoxine B	<1%	Anti-locomotive
Mitrafoline	<1%	
Isomitrafoline	<1%	
Oxindale A	<1%	
Oxindole B	<1%	
Speciofoline	<1%	Analgesic, antitussive
Isospeciofoline	<1%	
Ciliaphylline	<1%	Analgesic, antitussive
Mitraciliatine	<1%	
Mitragynaline	<1%	
Mitragynalinic acid	<1%	Hassan Z et al 2012
Comments of Articles and A	-10	······································

<1%

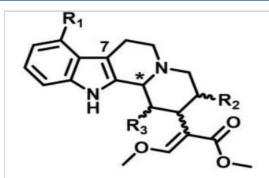
Corynantheidalinic acid

• Leaf analysis:

- 40 structurally related alkaloids, flavonoids, terpenoid saponins, polyphenols, and various glycosides.
- >25 indole alkaloids
 - Mitragynine (MG)
 - 7-hydroxymitragynine (70HMG)

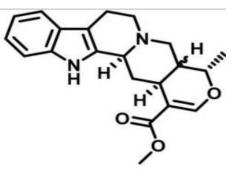
Potency

Competitive Binding Studies


- MG's affinity:
 - 1. Opioid Receptors (Kappa, Mu, Delta)
 - Mu partial agonist (~Buprenorphine (Bup))

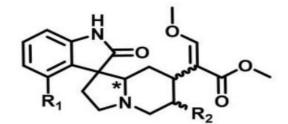
- 70HMG > MG > morphine

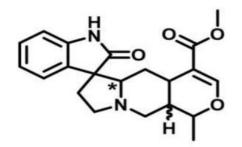
- Kappa antagonism more potent than Bup, morphine
- 2. Other Rs (serotonergic, noradrenergic and dopaminergic)
- Alpha-2 adrenergic R agonist
- 5-HT2A R antagonist
- D1 R agonist *
- ?5-HT2C, 5-HT7, also D2 and A2A adenosine Rs



PHASE Model


mitragynine congeners (MC)


1 - 10


pyran-fused MC

11 - 12

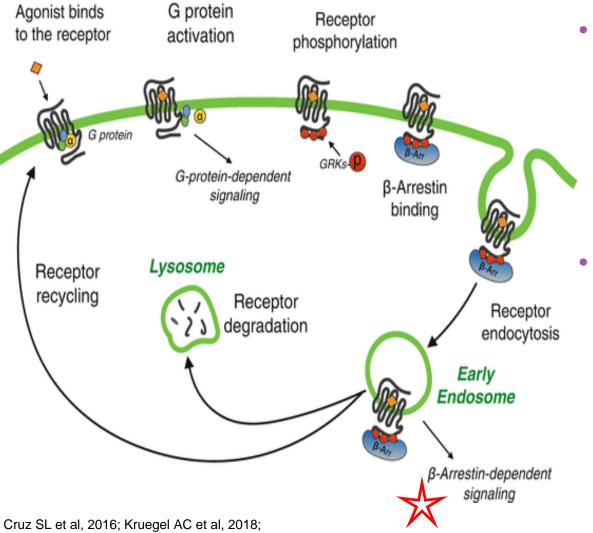
oxindole congeners (OC) 13 - 21

pyran-fused OC

22 - 25

Opioid Receptors

			Mu		Kappa	Delta		
Ю	Name	K _i [μM]	Prediction (Clarity/SEA)	Ki	Prediction	ĸ	Prediction	
1	Mitragynine	0.74	ΤT	1.3	ТТ	6.5	ТТ	
2	Speciogynine	1.0	ТТ	3.6	ТТ	>10	ТТ	
7	7-hydroxymitragynine	0.070	тт 🕻	0.32	тт (0.47	ТТ	
11	Ajmalicine	8.96	+ -	>10		>10		
12	Tetrahydroalstonine	>10	+ -	>10		>10		
14	Corynoxine B	1.6	- +	>10	- +	7.6		
16	Isorhynchophylline	0.54	- +	>10	- +	6.4		
20	Corynoxeine	>10	- +	>10		>10	+ -	
21	Isocorynoxeine	>10	- +	>10		>10	+ -	



Multiple Other Receptors

		Adrenergic Receptors					Serotonin Receptors					
		Alpha-2A		Alpha-2B		A	Alpha-2C		5-HT1A		5-HT2A	
ID	Name	Κ ί [μ Μ]	Prediction (Clarity/SEA)	Ki	Prediction	Ki	Prediction	Ki	Prediction	Ki	Prediction	
1	Mitragynine	2.3	++	4.9	++	3.5	- +	5.8		7.3	+ -	
2	Speciogynine	0.36	++	2.6	++	0.68	- +	0.54		2.9	+ -	
7	7-Hydroxy mitragynine	>10	+ -	>10	+ -	>10	+ -	>10		>10		
11	Ajmalicine	0.045	ТТ	0.043	ΤT	0.065	- T	0.42	+ -	>10		
12	Tetrahydroalstonine	0.018	ΤT	0.040	ΤT	0.053	- T	0.38	+ -	2.6		
14	Corynoxine B	>10		>10		>10		>10		>10		
16	Isorhynchophylline	4.8		>10		>10		>10		>10		
20	Corynoxeine	>10		8.4		>10		>10		>10		
21	Isocorynoxeine	>10		>10		>10		>10		>10		

Atypical Opioid Properties

Varadi A et al. 2016.

- Similarities to opioids:
 - Binding to opioid Rs initiates G-proteincoupled receptor (GPCR) signaling.
- Differences from opioids:
 - GPCR activation does not initiate the β-arrestin pathway
 - "biased agonism"

Additional Atypical Opioid Properties

- In mediating opioid-like analgesic effects, MG also blocks pain signaling through other mechanisms as well.
 - Activates α-2 adrenergic postsynaptic Rs present in modulatory "descending" pain pathways.
 - Impairs neuronal pain transmission by blocking Ca²⁺ channels.
 - Anti-inflammatory effects, secondary to the inhibition of COX-2 and prostaglandin E₂ mRNA expression.

ADVERSE EFFECTS

Animal Studies

- Chronic alkaloid ingestion associated with addictive behavior (enhanced punishment tolerance; reward-seeking behavior) and cognitive impairment.¹
 - 70HMG >> MG
- Ascending doses of kratom alkaloids result in an increase in: ²
 - Blood pressure
 - Liver function tests
 - Creatinine
- Drug : drug interactions. ³
 - MG inhibits: CYP 2C9, 2D6, 3A4
 - Glucuronidation (UDP-glucuronosyltransferases)
- 1. Ilmie MU et al, 2015; Hemby SE et al, 2019; Ismail NIW et al, 2017 Hassan Z et al, 2019; Sabetghadam A et al, 2013;
- 2. Smith LC et al, 2019
- 3. Kong WM et al, 2011; Meireles V et al, 2019; Azizi J et al, 2013. Azizi J 2010; Anwar R et al, 2012; Lim EL et al, 2013.

Human Case Reports

- With chronic (> 1 year) use:
 - Weight loss; Insomnia; Constipation; Skin hyperpigmentation; Extreme fatigue

Organ system	Presentation signs and conditions	References
Hepatic	Acute liver failure, hepatitis, transaminitis, intrahepatic cholestasis, hepatomegaly	[<u>23</u> , <u>108</u> – <u>116</u> , <u>131</u>]
Endocrine	Hypothyroidism, hypogonadism	[<u>26, 100]</u>
Renal	Acute kidney injury	[<u>67]</u>
Cardiac	Cardiotoxicity, arrhythmia	[<u>98, 99]</u>
Pulmonary	Acute lung injury, ARDS	[<u>101, 102</u>]
Obstetric	Neonatal abstinence syndrome	[<u>103–107]</u>
Neurological	Acute brain injury, seizure, coma, cognitive impairment	[<u>21, 81, 117, 118</u>]

Poison Data Bank / Medical Reports

- 2019 retrospective review of cases reported to the National Poison Data System and New York City Office of the Chief Medical Examiner:
 - Agitation (18.6%), tachycardia (16.9%), drowsiness (13.6%), confusion.
 - Serious neurological sequelae: seizures (6.1%), hallucinations (4.8%), coma (2.3%).
 - Toxicity occurred in a dose-dependent manner.

Kratom-related Deaths

- Swiss Webster mice: LD50 identical between IV administered 70HMG, MG, heroin.
- Co-ingestions and other active use disorders predispose patients to death
 - 87% of samples submitted to forensic laboratory also contain opioids.
- Knowledge of deaths attributed to Kratom alone is difficult to accurately quantify.

MANAGEMENT AND CLINICAL CASES

Toxicity and Overdose

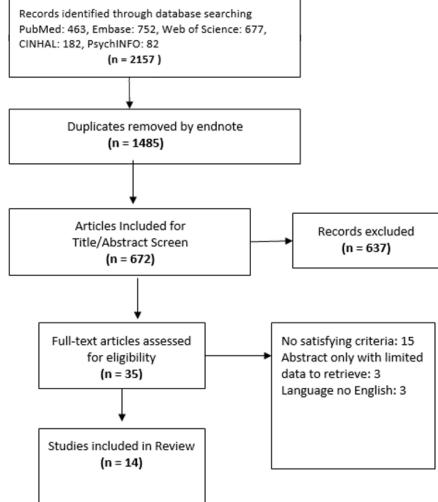
- Toxicity
 - Supportive management in most.
 - Acute hepatitis -- N-acetylcysteine (as in any other druginduced hepatitis).
 - Seizures or neurological symptoms -- anti-epileptics.
 - Kidney injury, cardiovascular events, or other emergency presentations addressed with appropriate measures.
- Overdose -- some reports of mixed results with reversal agents (naloxone) and such have not been evaluated in clinical trials.
 - Co-ingestions are common.

Withdrawal

- Mimics opioid withdrawal:
 - Starts ~12-24 hours from last use, can last up to 4 days.
 - Symptomatic management of a hyperadrenergic state and/or use of opioid receptor agonists (Methadone) or partial agonists (Buprenorphine).
 - Cravings.
 - High risk of relapse to use on cessation (~78-89% at 3 months).
- Withdrawal intensity positivity correlated to:
 - Daily amount consumed
 - Duration and frequency of use

37

Treatment Guidelines

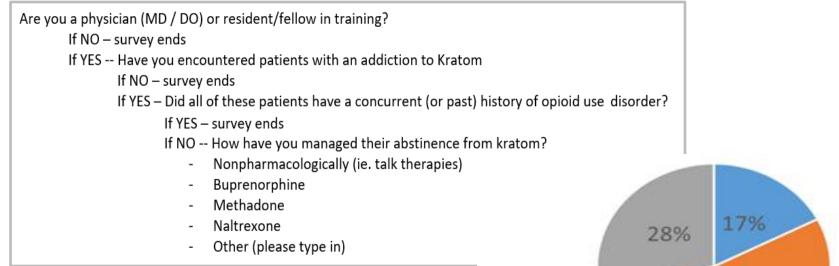

- To date, no guidelines exist to guide long-term management of kratom addiction.
- Efforts to establish a "standard of care".
 - Stanciu C., Ahmed S., Hybki B., Penders T., Galbis-Reig, D. Pharmacotherapy for Management of "Kratom Use Disorder", A Literature Riverw with Survey of Experts. Wisconsin Medical Journal – approved pending publication.

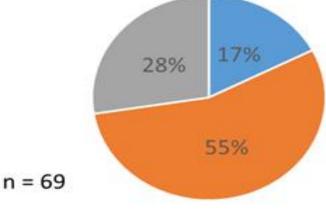
"KUD

Literature Review

Identification

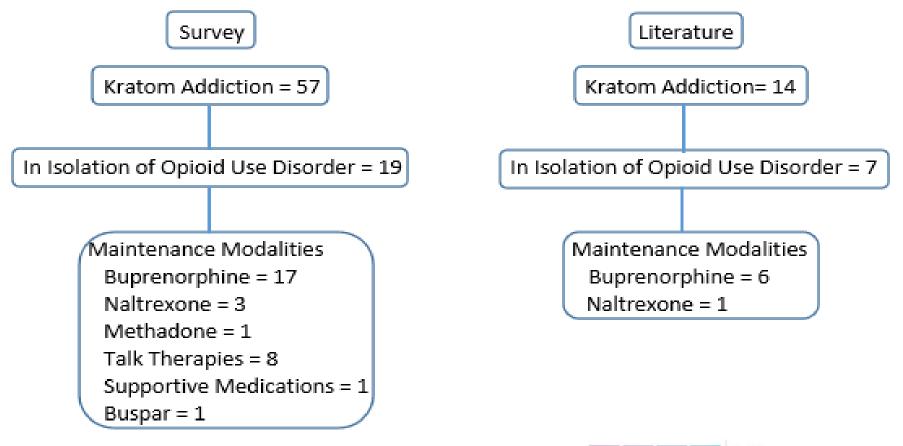
KUD + OUD Cases


Author, year	Extent of use	Reason for use	Intervention	Maintenance regimen	Reported outcome
Khazareli, 2018	Nine months, one tablespoon of powder dry plant six times daily	Pain	Inpatient Bup-mediated withdrawal, however taper was difficult and maintenance was required.	Bup-nx 8-2mg twice daily	Sober at 18 months
Cheng, 2019	Eight months, one capsule of kratom product five to ten times daily.	Energy	Outpatient induction	Bup-nx 16-4mg once daily	Sober, no cravings at subsequent follow up visits
Smid 2018	Four months of smoked dry kratom, unknown amount and frequency	Opioid substitution	Inpatient induction in pregnancy, increased at 36 weeks	Bup-nx 16-4mg once daily (20-5mg at 36 weeks)	Sober at subsequent follow up visits
Buresh, 2018	One year use of kratom product, unknown details	Pain	Outpatient induction	Bup-nx 24-6mg once daily	Sober at 7 months
Boyer, 2008	Several years, episodic use during opioid withdrawal as tea.	Opioid substitution	Outpatient induction	Bup-nx 16-4mg once daily	Sober at subsequent follow up visits
Mandeep, 2019	Unknown details.	Opioid substitution	Outpatient induction	Bup-nx 8-2mg twice daily	Sober at 2 months
Hartwell, 2018	Various, this is a report of 9 veterans.	Pain and opioid substitution	Various	Bup-nx, naltrexone, methadone	Unknown Providers Clinical Support System

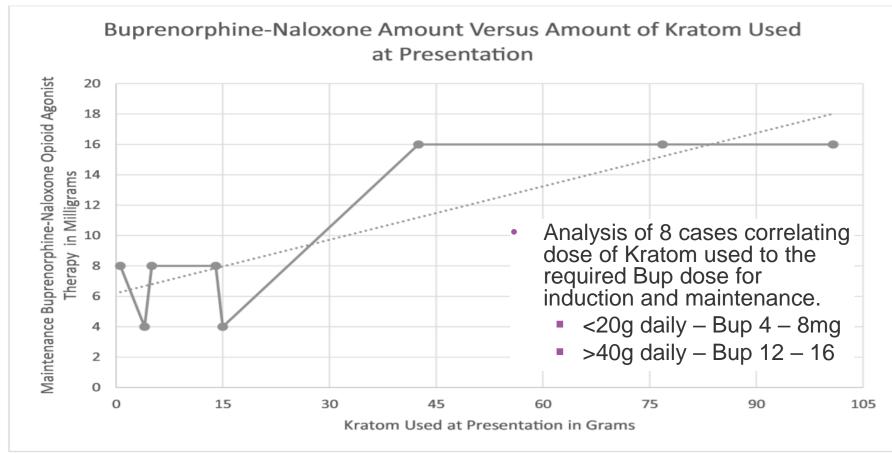

KUD-only Cases

_						
	Author, year	Extent of use	Reason for use	Intervention	Maintenance regimen	Reported outcome
\mathbf{x}	Galbis- Reig, 2016	Two year history of using kratom extract	Pain	Inpatient supportive (clonidine mediated) detox after several outpatient attempts	Naltrexone PO 50mg daily	Unknown
Å	Smuhl, 2019	Two year use of 30 grams daily of kratom crushed leaf, every 2 hours mixed with water	Anxiety, insomnia	Outpatient induction	Bup-nx 4-1mg once daily	Attempted taper at 3 months and relapsed to use, sobriety maintained upon restarting
	Smid, 2018	Seven months, unknown details	Pain, anxiety	Outpatient initiation following kratom cessation due to cravings	Bup 2mg daily	Sober at subsequent follow up visits
	Buresh, 2018	Unknown duration, 0.25 ounces every 4 hours	Pain	Outpatient induction	Bup-nx 4-1mg four times daily	Sober at 9 months
	Agapoff, 2019	Three years use of 30g daily of kratom crushed leaf as smoothie	Focus, concentration	Outpatient induction	Bup-nx 8-2mg once daily	Sober at 16 months, tapered to 6-1.5mg
	Diep, 2018	Unknown duration, overdosed on 600mg of kratom product	Unknown	Inpatient initiation while in rehabilitation due to cravings	Bup-nx 2-0.5mg three times daily	Able to taper after 45 days, unknown follow-up outcome
	Sheleg, 2011	One year use, tincture every 4 hours, unknown details	Pain	Inpatient induction on Bup due to withdrawal	Methadone	Outpatient transition to Methadone Providers

Survey of Addiction Experts



- No Encounter with Kratom Addiction
- Kratom Addiction with OUD Diagnosis
- Kratom Addiction without OUD Diagnosis



Survey of Addiction Experts

• To manage abstinence:

More evidence for MOUD

Dots represent each individual patient. The solid line shows the correlation (r = 0.84) between kratom dose used at presentation and dose of buprenorphine at OAT induction.

Conclusion

- In light of the detrimental risks associated with growing reports of KUD and lack of any randomized controlled trials to explore treatment as well as guidelines, there is evidence that the indication of MOUD should be extended to KUD as well.
 - This is especially true if one's use of Kratom is considered high risk, involves high doses, and meets DSM-5 diagnostic criteria for a moderate or severe use disorder.
 - Consideration should also be given to referral of patients for counseling or enrollment in 12-step addiction treatment programs.

References

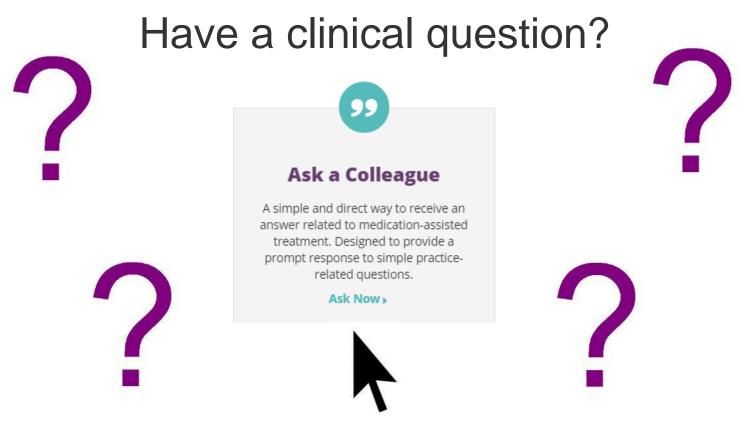
- Hassan Z, Muzaimi M, Navaratnam V, et al. From Kratom to mitragynine and its derivatives: physiological and behavioural effects related to use, abuse, and addiction. *Neurosci Biobehav Rev.* 2013;37(2):138-151.
- Stolt, A.-C., Schröder, H., Neurath, H., Grecksch, G., Höllt, V., Meyer, M.R., Maurer, H.H., Ziebolz, N., Havemann-Reinecke, U., Becker, A. "Behavioral and neurochemical characterization of kratom (Mitragyna speciosa) extract" *Psychopharmacology* Volume 231, Issue 1, January 2014, Pages 13-25
- Matsumoto K, Horie S, Takayama H, Ishikawa H, Aimi N, Ponglux D, et al. Antinociception, tolerance and withdrawal symptoms induced by 7-hydroxymitragynine, an alkaloid from the Thai medicinal herb *Mitragyna speciosa*. Life Sci. 2005;78(1):2–7.
- Ellis CR, Racz R, Kruhlak NL, et al. Evaluating kratom alkaloids using PHASE. *PLoS One*. 2020;15(3):e0229646. Published 2020 Mar 3.
- Cruz S.L., Granados-Soto V. (2016) Opioids and Opiates: Pharmacology, Abuse, and Addiction. In: Pfaff D., Volkow N. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3474-4_156
- Matsumoto K, Mizowaki M, Suchitra T, Murakami Y, Takayama H, Sakai S, et al. Central antinociceptive effects of mitragynine in mice: contribution of descending noradrenergic and serotonergic systems. Eur J Pharmacol. 1996;317(1):75–81.
- Matsumoto K, Yamamoto LT, Watanabe K, Yano S, Shan J, Pang PKT, et al. Inhibitory effect of mitragynine, an analgesic alkaloid from Thai herbal medicine, on neurogenic contraction of the vas deferens. Life Sci. 2005;78(2):187–194.
- Shaik Mossadeq WM, Sulaiman MR, Tengku Mohamad TA, Chiong HS, Zakaria ZA, Jabit ML, et al. Anti-inflammatory and antinociceptive effects of *Mitragyna speciosa* Korth methanolic extract. Med Princ Pract. 2009;18(5):378–384.
- Utar Z, Majid MIA, Adenan MI, Jamil MFA, Lan TM. Mitragynine inhibits the COX-2 mRNA expression and prostaglandin E(2) production induced by lipopolysaccharide in RAW264.7 macrophage cells. J Ethnopharmacol. 2011;136(1):75–82.
- Ilmie MU, Jaafar H, Mansor SM, Abdullah JM. Subchronic toxicity study of standardized methanolic extract of *Mitragyna speciosa* Korth in Sprague-Dawley Rats. Front Neurosci. 2015;9:189.
- Hemby SE, McIntosh S, Leon F, Cutler SJ, McCurdy CR. Abuse liability and therapeutic potential of the *Mitragyna speciosa* (kratom) alkaloids mitragynine and 7-hydroxymitragynine. Addict Biol. 2019;24(5):874–885.
- Hassan Z, Suhaimi FW, Ramanathan S, Ling K-H, Effendy MA, Muller CP, et al. Mitragynine (Kratom) impairs spatial learning and hippocampal synaptic transmission in rats. J Psychopharmacol. 2019;33(7):908–918.
- Sabetghadam A, Navaratnam V, Mansor SM. Dose-response relationship, acute toxicity, and therapeutic index between the alkaloid extract of *Mitragyna speciosa* and its main active compound mitragynine in mice. Drug Dev Res. 2013;74(1):23–30.
- Ismail NIW, Jayabalan N, Mansor SM, Muller CP, Muzaimi M. Chronic mitragynine (kratom) enhances punishment resistance in natural reward seeking and impairs place learning in mice. Addict Biol. 2017;22(4):967–976.

References

- Kong WM, Chik Z, Ramachandra M, Subramaniam U, Aziddin RER, Mohamed Z. Evaluation of the effects of *Mitragyna speciosa* alkaloid extract on cytochrome P450 enzymes using a high throughput assay. Molecules. 2011;16(9):7344–7356.
- Meireles V, Rosado T, Barroso M, Soares S, Gonçalves J, Luís Â, et al. *Mitragyna speciosa*: clinical, toxicological aspects and analysis in biological and non-biological samples. Medicines. 2019;6(1):35.
- Azizi J, Ismail S, Mordi MN, Ramanathan S, Said MIM, Mansor SM. In vitro and in vivo effects of three different *Mitragyna speciosa* korth leaf extracts on phase II drug metabolizing enzymes–glutathione transferases (GSTs) Molecules. 2010;15(1):432–441.
- Anwar R, Hussin HA, Ismail S, Mansor MS. In vitro effect of mitragynine on activity of drug metabolizing enzymes, n-demethylase and glutathione s-transferase in streptozotocin-induced diabetic rats. Pharmacologyonline. 2012;1:68–75.
- Azizi J, Ismail S, Mansor SM. *Mitragyna speciosa* Korth leaves extracts induced the CYP450 catalyzed aminopyrine-*N*-demethylase (APND) and UDP-glucuronosyl transferase (UGT) activities in male Sprague-Dawley rat livers. Drug Metabol Drug Interact. 2013;28(2):95–105.
- Lim EL, Seah TC, Koe XF, Wahab HA, Adenan MI, Jamil MFA, et al. In vitro evaluation of cytochrome P450 induction and the inhibition potential of mitragynine, a stimulant alkaloid. Toxicol In Vitro. 2013;27(2):812–824.
- Smith LC, Lin L, Hwang CS, et al. Lateral Flow Assessment and Unanticipated Toxicity of Kratom. *Chem Res Toxicol.* 2019;32(1):113-121.
- Eastlack SC, Cornett EM, Kaye AD. Kratom-Pharmacology, Clinical Implications, and Outlook: A Comprehensive Review. *Pain Ther.* 2020;9(1):55-69
- Eggleston W, Stoppacher R, Suen K, Marraffa JM, Nelson LS. Kratom use and toxicities in the United States. Pharmacotherapy. 2019;39(7):775–777.
- Corkery JM, Streete P, Claridge H, Goodair C, Papanti D, Orsolini L, et al. Characteristics of deaths associated with kratom use. J Psychopharmacol. 2019;33(9):1102–1123
- Kruegel AC, Grundmann O. The medicinal chemistry and neuropharmacology of kratom: A preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. *Neuropharmacology*. 2018;134:108-120.
- Váradi A, Marrone GF, Palmer TC, et al. Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with mu agonism and delta antagonism, which do not recruit β-arrestin-2. *Journal of medicinal chemistry*. 2016;59(18):8381-8397.
- Weiss, Stephanie T. MD, PhD; Douglas, Heather E. MD Treatment of Kratom Withdrawal and Dependence With Buprenorphine/Naloxone, Journal of Addiction Medicine: August 26, 2020 Volume Publish Ahead of Print Issue
- Stanciu CN, Gnanasegaram SA, Ahmed S, Penders T. Kratom withdrawal: a systematic review with case series. J Psychoact Drugs. 2019;51(1):12–18.
- Singh D, Müller CP, Vicknasingam BK. Kratom (*Mitragyna speciosa*) dependence, withdrawal symptoms and craving in regular users. Drug Alcohol Depend. 2014;139:132–137

References

- Khazaeli A, Jerry JM, Vazirian M. Treatment of Kratom Withdrawal and Addiction With Buprenorphine. J Addict Med. 2018;12(6):493–495.
- Galbis-Reig D. A Case Report of Kratom Addiction and Withdrawal. WMJ. 2019;115(1):49–52.
- Overbeek DL, Abraham J, Munzer BW. Kratom (Mitragynine) ingestion requiring naloxone reversal. Clin Pract Cases Emerg Med. 2019;3(1):24–26. doi: 10.5811/cpcem.2018.11.40588.
- Diep J, Chin DT, Gupta S, Syed F, Xiong M, Cheng J. Kratom, an emerging drug of abuse: a case report of overdose and management of withdrawal. A&A Pract. 2018;10(8):192–194.
- Mousa MS, Sephien A, Gutierrez J, O'Leary C. N-Acetylcysteine for acute hepatitis induced by Kratom Herbal Tea. Am J Ther. 2018;25(5):e550–e551. doi: 10.1097/MJT.00000000000631
- Nelsen JL, Lapoint J, Hodgman MJ, Aldous KM. Seizure and coma following Kratom (Mitragynina speciosa Korth) exposure. J Med Toxicol. 2010;6(4):424–426.
- Nasser AF, Heidbreder C, Gomeni R, Fudala PJ, Zheng B, Greenwald MK. A population pharmacokinetic and pharmacodynamic modelling approach to support the clinical development of RBP-6000, a new, subcutaneously injectable, long-acting, sustained-release formulation of buprenorphine, for the treatment of opioid dependence. *Clinical pharmacokinetics*. 2014;53(9):813-824.
- Greenwald MK, Comer SD, Fiellin DA. Buprenorphine maintenance and mu-opioid receptor availability in the treatment of opioid use disorder: implications for clinical use and policy. *Drug and alcohol dependence*. 2014;144:1-11.
- Donna M Papsun, Ayako Chan-Hosokawa, Laura Friederich, Justin Brower, Kristopher Graf, Barry Logan, The Trouble With Kratom: Analytical and Interpretative Issues Involving Mitragynine, *Journal of Analytical Toxicology*, Volume 43, Issue 8, October 2019, Pages 615–629,


PCSS Mentoring Program

- PCSS Mentor Program is designed to offer general information to clinicians about evidence-based clinical practices in prescribing medications for opioid use disorder.
- PCSS Mentors are a national network of providers with expertise in addictions, pain, evidence-based treatment including medications for addiction treatment.
- 3-tiered approach allows every mentor/mentee relationship to be unique and catered to the specific needs of the mentee.
- No cost.

For more information visit: https://pcssNOW.org/mentoring/

PCSS Discussion Forum

http://pcss.invisionzone.com/register

Providers Clinical Support System

PCSS is a collaborative effort led by the American Academy of Addiction Psychiatry (AAAP) in partnership with:

Addiction Technology Transfer Center	American Society of Addiction Medicine		
American Academy of Family Physicians	American Society for Pain Management Nursing		
American Academy of Pain Medicine	Association for Multidisciplinary Education and Research in Substance use and Addiction		
American Academy of Pediatrics	Council on Social Work Education		
American Pharmacists Association	International Nurses Society on Addictions		
American College of Emergency Physicians	National Association for Community Health Centers		
American Dental Association	National Association of Social Workers		
American Medical Association	National Council for Behavioral Health		
American Osteopathic Academy of Addiction Medicine	The National Judicial College		
American Psychiatric Association	Physician Assistant Education Association		
American Psychiatric Nurses Association	Society for Academic Emergency Medicine		

Providers Clinical Support System

www.pcssNOW.org

pcss@aaap.org

Funding for this initiative was made possible (in part) by grant no. 1H79TI081968 from SAMHSA. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.